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LETTER TO THE EDITOR 

Cellular automaton models and traffic flow 

A Schadschneidert and M Schreckenbergt 
Institut fiir Theoretische Physik, Universitiit zu Kbln, D-50937 Ktiln. Federal Republic of 
G e r m y  

Received 17 June 1993 

Abstract. A recently introduced cellular automaton model for the description of traffic flow is 
investigated. It generalizes asymmetric exclusion models which have attracted B lot of interest 
in the past. We calculate the so-called fundamental diagram (Row vesus density) for parallel 
dynamics using an improved mean-field approximation which takes into account shon-range 
correlations. For mawimum velocity we find that the simplest of these non-trivial approximations 
gives the exact result. For higher velocities our results are in excellent agreement with numerical 
data. 

The investigation of traffic flow in the past was based mainly on the use of fluid-dynamical 
methods. In recent years methods of nonlinear dynamics have also been applied. On the 
other hand, due to their computational simplicity, lattice gas automata [ 11 were successfully 
applied to simulate fluids [Z] and traffic in one [3] and two dimensions [4,5].  similar 
models have also been used for the description of asymmetric exclusion processes [6-141 
and surface roughening [15]. Several exact solutions have been obtained for asymmetric 
exclusion processes where the particles can move at most one lattice spacing per update step. 
In a more general situation one considers particles which can move over larger distances. 
All these models may be interpreted as discrete models for the simulation of traffic flow. 
Starting from realistic traffic one usually has a whole spectrum of car velocities and thus 
it is straightforward to introduce these~more general exclusion models which then are more 
appropriate for comparison with 'experiments' (i.e. measurements on freeway traffic [16]). 

In this letter we consider single-lane traffic on a ring geometry (length L ,  periodic 
boundary conditions). Generalizations to multi-lane traffic and other boundary conditions 
(e.g. the bottleneck situation where one considers open boundaries) will also be discussed 
briefly. 

The exact definition of the model following [3] is as follows: on a ring with L sites 
every site can either be empty or occupied by one vehicle with velocity U = 0, 1, . . . , U-. 
At each discrete time-step t + t +  1 an arbitrary arrangement of N cars is updated according 
to the following rules: 

(1) Acceleration: if the velocity U of a vehicle is lower than U- the speed is advanced 
by one [U, = U + 11. 

(2) Slowing down (due to other cars): if the distance d to the next car ahead is not 
larger than ul(d < UI) the speed is reduced to d - l[u2 = d - 11. 

t email:as~thp.uni-koeIn.de 
t email:schred;ethp.un-koeln.de 

03054470/93/150679+05$07.50 0 1993 IOP Publishing Ltd L679 



L680 Letter to the Editor 

(3) Randomization: with probability p ,  the velocity of a vehicle (if greater than zero) 

(4) Car motion: each vehicle is advanced U = u3 sites. 
is decreased by one [u3 = u2 - 11. 

These rules can be applied to all cars in parallel (parallel update), sequentially to randomly 
chosen cars (random-sequential update) or in parallel to all cars on even and odd lattice 
sites (sublattice-updatet). The rules ensure that the total number N of cars is conserved 
under the dynamics (this is not true in the bottleneck-situation). Note that even for parallel 
update the randomization yields non-deterministic behaviour. For random-sequential update 
the probability p > 0 is not essential because it only rescales the time axis 131. In the 
following we will concentrate on the cases U,, = I ,  2 and parallel update. 

In the simplest case U,, = 1 the cars are allowed to move only one step during an 
update. For this situation several results are known [6-14]. In particular, it can be shown 
that for random-sequential update the mean-field ansatz yields the exact equilibrium state 
[3,8], which is equivalent to the fact that for a fixed number of cars every arrangement of 
cars occurs with the same probability. Therefore it is quite natural to take the mean-field 
approach also as a starting point for the investigation of higher velocities U,, > 1 and 
parallel update. 

Our main interest will be the calculation of the so-called fundamental diagram (flow g 
versus density p = N / L ) .  As described in [3] these results can be compared directly with 
measurements of real traffic [16]. One expects a transition from laminar flow to start-stop 
waves with increasing car density. For U,, = 1 it is easy to see that the fundamental 
diagrap is symmetric with respect to p = 4 due to particlehole symmetry. This is not true 
for realistic traffic where one finds a distinct asymmetry where the maximum of the flow is 
shifted to lower values of p(% 0.2). 

In the simple mean-field theory approach one assumes that two neighbouring sites on 
the ring are completely uncorrelated. Instead of applying the four update rules in the order 
1-2-34 we use the order 2 - 3 4 1 ,  i.e. we write down the evolution equations of the 
configurations of the system after the first step. This has the advantage that every site is in 
one of the U,,+ 1 states U = 0, 1, . . . , U,, where a state U > 1 denotes a car with velocity 
U and state 0 denotes an empty site. Note, that there are no cars with velocity zero since 
after the acceleration step every car has at least velocity 1. The technical advantage of this 
procedure lies in the fact that one reduces the number of evolution equations by 1 without 
changing the result. The changed ordering 2-3-4-1 has to be taken into account in the 
calculation of the flow q. Therefore the complete dynamics of the system is determined by 
a set of U,, coupled nonlinear equations for the densities c&) of the cars with velocity U. 
In general, the timedependent equations cannot be solved exactly due to the nonlinearities. 
However, the equilibrium properties in the mean-field limit can be derived exactly for any 
finite velocity U,, [I71 (see figure 1 for umax = 1 and figure 3 for U,, = 2). 

In the next step we improve the simple mean-field theory by taking into account 
neighbour correlations. In the n-site approximation one writes down self-consistent 
evolution equations for chain segments of length n where neighbouring segments have n - 1 
sites in common (thisn-site approF&mation is similar to the (n, n - I)-cluster approximation 
of [18]). Here self-consistency means that one has to deal with conditional probabilities for 
the sites not belonging to the chain segment under consideration. The number of equations 
is (U,,,= + 1)". Since a car can drive at most U,, sites in one update-step one should take 
n = U,= at least to get reasonable results. 

t Often the sublattice-update is also called parallel update. 
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For U,,,% = 1 and parallel update the n-site approximations with n > 2 become 
identical showing that the two-site approximation gives the exact result. This new result is 
not surprising since for random-sequential update, the mean-field (one-site approximation) 
becomes exact, but parallel update rules in general produce stronger correlations. Explicitly, 
in the thermodynamic limit for the probabilities F'(u1, u2) we find neighboured sites in the 
states UI and u2 (where uj = 0, 1 and uj = 0 again denotes an empty site and p = 1 - p) 

1 - [ 1 - 4 ~ p ( l - p ) ] ' ~ z  
P(0, 1) = P(1,O) = . 

2P 
P(0,O) = 1 - p - P(1,O) 

P(1, l )  = p - P(1.0). 

The corresponding 'groundstate' for a finite system is given by 

Here N is a normalization constant and the sum E' runs over all configurations with a fixed 
number N of cars (i.e. E;=, uj = 1). This result can be shown to beexact for any finite ring 
with a fixed number of cars. It is interesting to note that in contrast to random-sequential 
dynamics parallel dynamics lead to an effective attraction between 'particles' and 'holes' 
(i.e. P(O)P(l) = p(1 - p) < P(O1)) and thus to a higher flow. This flow can be obtained 
from the probabilities (1) and yields the following (see figure 2): 

1 - [l -4pp(l - p)]l/z 
s = ( l - p ) P ( l , O ) =  2 (3) 

For U,, = 2 ,we have investigated the n-site approximations up to n = 5. Unfortunately, 
the approximation seems not to become exact in this case. As can be seen from figure 3 
the maximum difference between the four and five-site approximation is less than 1%. 'This 
suggests that these approximations are already close to the exact result. This assertion is 
further supported by the excellent agreement with the numerical simulations [17]. As can be 
seen from figure 3 the neighbour correlations lead to an increase of the flux q .  In addition 
we point out that the fundamental diagram for umm = 2 shows the asymmetry known from 
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F i g w  2. Exact f u n d a n a l  diagram for vmu = I and 
different values of p.  

Figure 3. Fundamental diagram for umw = 2 and 
p = f as obtained from the one-site approximation 
(lowest curve) up to the five-site approxidon (highest 
curve). 

experimental data [16]. The details of the method and further results will be published 
elsewhere [17,191. 

Apart from periodic boundary conditions, other types of boundary conditions are also 
relevant for the description of traffic flow. Indeed, it is very important for measurement 
of real traffic whether the observed situation corresponds to free traffic or to part of a 
bottleneck where the long-range correlations are stronger 11-51, The most natural situation 
for a bottleneck occurs if one considers the reduction (over a finite length) of two-lane to 
one-lane traffic due to obstacles on one lane. At the end one has again two-lane-traffic. 
In principle, this is equivalent to one-lane traffic with given input and output rate at the 
boundaries. From a technical point of view the bottleneck situation is-ven in a mean-field 
approximation-much more complicated. Whereas in the ring geometry the density is fixed 
by the initial condition in the bottleneck the system evolves itself to a stationary state with 
a certain mean density. This can be seen explicitly for umaX =~ 1 and random sequential 
dynamics in [9-121 where the flux through the bottleneck is independent of the input and 
output rates over a wide range of these parameters. For larger velocities U,, > 1 the 
bottleneck situation will be studied in a future publication [19]. 

We also investigated simple models for two-lane traffic. Here the update rules are 
not defined by 1-4. Instead we have introduced fixed densities p~ and pz of cars with 
velocity 1 and 2, respectively. Surprisingly, we find in the mean-field approximation that 
the fundamental diagram of each lane is asymmetric but the maximum is shifted to larger 
values of p(pmu > $). Further investigations will show if this is an artifact of mean-field 
theory or an intrinsicproperty of our model [17]. 

In conclusion, we have studied simple automaton models for the description of traffic 
flow. It seems that the equilibrium properties of these types of models can be described 
accurately by improved meamfield theories (n-site approximations). On the other hand the 
dynamics of these systems seem to be rather complicated. We stress that these models also 
can be used to describe real physical problems such as asymmetric exclusion processes and 
surface roughening. We have also applied the improved mean-field theory [19] to Domany- 
Kinzel cellular automaton [20] and find a phase diagram which is in very good agreement 
with recent computer simulation studies [21, 221. 
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